TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmer specification.

1. Teaching Institution	Al-Ayen University
2. University Department/Centre	College of Petroleum Engineering
3. Course title/code	Mathematics II
4. Modes of Attendance offered	classes
5. Semester/Year	year
6. Number of hours tuition (total)	4
7. Date of production/revision of this specification	9/10/2023

Aims of the Course

1. Learn polar coordinates and the relationship of polar coordinates and regular coordinates and how to find the area and length of polar curves

2- The student can find the first and upper partial derivatives as well, the total differential

3- The student has the ability to transform a double integral into general coordinates.

4- The student can evaluate the triple integrals on general volumes

5. Learn to find vectors and how to perform vector arithmetic

6- The study of analytic geometry, where they present simple ways to describe lines, planes, surfaces, and curves in space.

7- Use this calculus to describe the trajectories and motions of objects moving in a plane or in space, and note that the velocities and accelerations of these objects along their paths are vectors.

8- Study of infinite series with many applications of mathematics.

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Cognitive goals A1- Converting expressions from Cartesian coordinates to polar coordinates, and drawing graphs of polar curves, recognizing the equations of standard polar curves A2- Understand the partial derivatives of the first and second orders of a function of two real variables A3- Understand triple integrals on general volumes A4- Understand the arithmetic operations of trends A5 - Understand the order of an ordinary differential equation and determine whether the equation is linear or nonlinear. A6- Understand a form of Taylor series from a series Maclaurin B. The skills goals special to the course. **B1** - Asking questions B2 - Solve examples and problems B3 - The student will be able to construct special equations for polar events B4 - The student will be able to create special series **Teaching and Learning Methods** 1- Giving electronic lectures 2- Curriculum books approved and approved in the university calendar 3- Daily and monthly exams with homework Assessment methods 1 - Daily exams representing 6% 2- Semester exam number 2 representing 30% 3- Attendance %2 4- Daily duties 2% C. Affective and value goals C1- The student shows a desire to know the fields of reflection of functions and how to create equations. C_2 - The student seeks to apply different methods in the solution. C3 - The student proposes a research topic in the direction of a particular problem. C4- The student has a position in solving a specific problem in his field of mathematics **Teaching and Learning Methods** • Delivering electronic lectures and simultaneous e-learning with blended learning Discussions and scientific dialogues and ask questions Assessment methods 1- Daily and class duties through discussion 2- Commitment to the specified times, whether lectures or handing in assignments

D. General and rehabilitative transferred skills (other skills relevant	
to employability and personal development)	
D1 - Develop students' abilities to find solutions in the future	
D2 - Develop the student's abilities to open discussion	
D3 - Develop the student's abilities to be self-reliant in research	
issues	
11. Course Structure	

Week	Hours	Required	Unit/Module	Teaching	Assessment
		learning	or	Method	Method
		outcomes	Topic Title	-	
	1 4	scientific	Introduction to	lecture +	Exam and
	3 the	. knowledge	polar	aiscussion	daily
	1 tut	•	coordinates		questions
	2 4	scientific	Polar curves	lecture +	Exam and
	3 the	. knowledge	Standard polar	discussion	daily
	1 tut		curves		questions
	3 4	scientific	Area of a	lecture +	Exam and
	3 the	. knowledge	plane figure	discussion	daily
	1 tut		bounded by a		questions
			polar curve		
	4 4	scientific	Arc length of a	lecture +	Exam and
	3 the	. knowledge	polar curve	discussion	daily
	1 tut.	•			questions
	5 4	scientific	Find	lecture +	Exam and
	3 the	. knowledge	symmetry of	discussion	daily .
	1 tut	•	polar equation		questions
	6 4	scientific	Volume of	lecture +	Exam and
	3 the	. knowledge	rotation of a	discussion	daily .
	1 tut	•	polar curve		questions
			Surface of		
			rotation of a		
			polar curve		
	7 4	scientific	Partial	lecture +	Exam and
	3 the	. knowledge	differentiation	discussion	daily .
	1 tut	•	First partial	,	questions
			derivatives		
	8 4	scientific	Implicit	lecture +	Exam and
	3 the	. knowledge	function	discussion	daily
	1 tut.	•			questions
	9 4	scientific	Change of	lecture +	Exam and
	3 the	. knowledge	variable	discussion	daily
	1 tut	•			questions
1	0 4	scientific	Double	lecture +	Exam and
	3 the	. knowledge	integral over	discussion	daily
	1 tut		rectangle area		questions
1	1 4	scientific	Triple integral	lecture +	Exam and

	3 the.	knowledge	over generaldisc	ussion da	aily
	1 tut.		area	qu	uestions
12	4	scientific	first momentlect	ure + E	xam and
	3 the.	knowledge	and centroid disc	cussion da	aily
	1 tut.	-		qu	uestions
13	4	scientific	Introduction to lect	ure + E	xam and
	3 the.	knowledge	Vectors And disc	cussion da	aily
	1 tut	-	The Geometry	qu	uestions
			Of Space		
14	4	scientific	Vectorlect	ure + E	xam and
	3 the.	knowledge	Algebradisc	cussion da	aily
	1 tut	_	Operations	qı	uestions
15	4	scientific	Introduction to lect	ure + E	xam and
	3 the.	knowledge	differentialdisc	cussion da	aily
	1 tut		equations	qı	uestions
16	4	scientific	First-Orderlect	ure + E	xam and
	3 the.	knowledge	Differentialdisc	cussion da	aily .
	1 tut		Equations and	qı	uestions
			Solutions		
17	4	scientific	Introductionlect	ure + E	xam and
	3 the.	knowledge	&Representing ^{disc}	cussion da	aily
	1 tut		Sequences and	qı	uestions
			series		
			Testing for		
			Convergence		
			and		
			Divergence		
18	4	scientific	Introduction lect	ure + \mathbf{E}	xam and
	3 the.	knowledge	about the disc	sussion da	ally
	1 tut		Taylor series	qu	uestions
			and the		
			Maclaurin		
			series		

12.Infrastructure	
1. Books Required reading:	Thomas Calculus_ Early Transcendentals 13th Edition
	c2014
2. Main references (sources)	E. Kreyszing" Advanced Engineering
	Mathematics"
	Stroud K. A. " Advanced Engineering
	Mathematics "

A- Recommended books and	Thomas Calculus
references (scientific journals,	
reports).	
B-Electronic references,	https://www.pearson.com/store/p/thomas-calculus- early_transcendentals/P100002390868/9780321884077
Internet	carry-transcendentals/1100002370000/770032100+077
sites	
13.The development of the curriculum plan	Update the course periodically through continuous access to the most important scientific sources in the field of specialization and benefit from them.