

Al-Ayen University / Petroleum Engineering College

Template of Course Specification

Name and Scientific title of the subject instructor: Dr. Mohaimen Al-Thamir

Name of Course: Mechanics

Course Specification

1.	Teaching Institution	Al-Ayen University / Petroleum			
		Engineering College			
2.	University Department /	Petroleum Engineering College			
	Center				
3.	Course Title / Code	Mechanics			
4.	Program(s) to which it	B.Sc.			
	contributes				
5.	Modes of Attendance offered	Class attendance			
6.	Semester/Year	1 st and 2 nd , 2023			
7.	Number of hours tuition	60			
	(total)				
8.	Date of production/revision of	Jan. 2023			
	this Specification				
9.	Aims of the Course: The studer	nt will know the following:			
	1 Understanding the principa	als of Statics and finding out the resultant			
	of forces and analyzing a fe	of forces and analyzing a force into its perpendicular components.			
		Analyzing the forces and moments acting on a body.			
		ces and center of gravity of shapes.			
	4 Understanding the principal	Understanding the principals of Dynamics and discussing different			
	types of motion; rectilinear	types of motion; rectilinear, curvilinear, and rotation.			
	5 Understanding the methods	Understanding the methods of finding out the work and energy			
	experienced by a body.				
		f vibrations and the corresponding			
	analyzing mathematics.				
10.		Learning and Assessment Methods			
		nding: The Mechanics program seeks to			
	A	lents to understand the effects of forces and			
		moments on the body in correlation with potential work, energy, and			
		vibrations of a body reaching for a best understanding of the material			
		behavior in that a particular engineering application.			
		Subject-specific skills: The program provides the capability to			
		scientifically analyze the engineering problem and to find out the			
		potential behavior that the material/body can undergo.			
		assessment method are divided into three			
		parts; quizzes, monthly exams, and final exams.			
		g a skilled staff to the scientific community			
	Page (1)				

	that can effectively contribute to develop and tackle the relevant engineering problems.
Е	Teaching and learning methods: The teaching is performed
	theoretically based upon theoretical concepts of Mechanics in both
	Statics and Dynamics concepts.
F	General and Transferable Skills (other skills relevant to
	employability and personal development): The most important
	skills are the knowledge and capability to provide scientific proposals
	to tackle a given engineering problem.

11.	1. Course Structure				
Week	Hours	Required Teaching Outputs	Unit/Module or Topic Title	Teaching Methods	Assessment Methods
1.	2	Student will understand	Principals of Statics	Class attendance	Quizzes, monthly exams, and final exams
2.	2	Student will understand	Introduction, resultant of force system	Class attendance	Quizzes, monthly exams, and final exams
3.	2	Student will understand	Finding out the force resultant using graphical method	Class attendance	Quizzes, monthly exams, and final exams
4.	2	Student will understand	Finding out the force resultant using graphical method	Class attendance	Quizzes, monthly exams, and final exams
5.	2	Student will understand	Finding out the force resultant using trigonometric method	Class attendance	Quizzes, monthly exams, and final exams
6.	2	Student will understand	Finding out the force resultant using trigonometric method	Class attendance	Quizzes, monthly exams, and final exams
7.	2	Student will understand	Orthogonal components of a force	Class attendance	Quizzes, monthly exams, and final exams
8.	2	Student will understand	Friction	Class attendance	Quizzes, monthly exams, and final exams
9.	2	Student will understand	Friction	Class attendance	Quizzes, monthly exams, and final exams
10.	2	Student will	Moment of force	Class	Quizzes, monthly

جامعة الغيان					Today a Photodoxy Egilomity Al Agen Calendary
		understand		attendance	exams, and final exams
11.	2	Student will understand	Moment of force	Class attendance	Quizzes, monthly exams, and final exams
12.	2	Student will understand	Couples; resultant of coplanar force systems	Class attendance	Quizzes, monthly exams, and final exams
13.	2	Student will understand	Couples; resultant of coplanar force systems	Class attendance	Quizzes, monthly exams, and final exams
14.	2	Student will understand	Center of gravity	Class attendance	Quizzes, monthly exams, and final exams
15.	2	Student will understand	Center of gravity	Class attendance	Quizzes, monthly exams, and final exams
16.	2	Student will understand	Center of gravity	Class attendance	Quizzes, monthly exams, and final exams
17.	2	Student will understand	Center of gravity	Class attendance	Quizzes, monthly exams, and final exams
18.	2	Student will understand	Principals of Dynamics	Class attendance	Quizzes, monthly exams, and final exams
19.	2	Student will understand	Rectilinear motion	Class attendance	Quizzes, monthly exams, and final exams
20.	2	Student will understand	Rectilinear motion	Class attendance	Quizzes, monthly exams, and final exams
21.	2	Student will understand	Curvilinear motion	Class attendance	Quizzes, monthly exams, and final exams
22.	2	Student will understand	Curvilinear motion	Class attendance	Quizzes, monthly exams, and final exams
23.	2	Student will understand	Rotational motion	Class attendance	Quizzes, monthly exams, and final exams
24.	2	Student will understand	Rotational motion	Class attendance	Quizzes, monthly exams, and final exams
25.	2	Student will understand	Work and Energy	Class attendance	Quizzes, monthly exams, and final exams

26.	2	Student will understand	Work and Energy	Class attendance	Quizzes, monthly exams, and final exams
27.	2	Student will understand	Work and Energy	Class attendance	Quizzes, monthly exams, and final exams
28.	2	Student will understand	Mechanical Vibrations	Class attendance	Quizzes, monthly exams, and final exams
29.	2	Student will understand	Mechanical Vibrations	Class attendance	Quizzes, monthly exams, and final exams
30.	2	Student will understand	Mechanical Vibrations	Class attendance	Quizzes, monthly exams, and final exams

12. Infrastructure			
Required reading:	 ENGINEERING 		
·CORE TEXTS	MECHANICS STATICS		
·COURSE MATERIALS	J. L. MERIAM • L. G.		
· OTHER	KRAIGE • J. N. BOLTON		
	 ENGINEERING 		
	MECHANICS DYNAMICS		
	J. L. MERIAM • L. G.		
	KRAIGE • J. N. BOLTON		
Community-based facilities) include for	Scientific collaboration with other		
example, guest Lectures, internship,	academic staff in the relevant field is		
field studies)	one of our future plan to develop the		
	program.		
20	C/s		
0.034			

13.	Admissions			
Pre-re	Pre-requisites Pre-requisites			
Minimum number of students		10		
Maximum number of students		30		

AL-AYEN UNIVERSITY